Silica exposure among miners at high altitude. Inhaled dose and evaluation methods in hypobaric environments
PDF (Español (España))

Keywords

minute volume; vital capacity; TLV-TWA, inhaled dose, miners at high altitude

How to Cite

1.
Zamora Saá M, Jara-Jegó R. Silica exposure among miners at high altitude. Inhaled dose and evaluation methods in hypobaric environments. Arch Prev Riesgos Labor [Internet]. 2024 Jan. 18 [cited 2024 May 17];27(1):41-53. Available from: https://www.archivosdeprevencion.eu/index.php/aprl/article/view/350

Abstract

Objective: To evaluate silica exposure among Chilean miners at high altitude, using different methodological approaches, for the purpose of determining the safest method to control exposures. 

Methods: The 46 miners in the sample worked at 3000 meters above sea level in nonstandard work shifts, consisting of four consecutive 12-hour days, followed by four consecutive days off. Silica samples were obtained in each of the jobs positions of these 46 high-altitude miners. The results of the concentrations are presented in mg/m3. Exposures were evaluated in compatison to the Threshold Limit Value (Method 1) and using two other methodologies that incorporate respiratory parameters (Methods 2 and 3). The proportion of miners at risk was determined with each of these methods and compared.

Results: Based on the Threshold Limit Value (Method 1), 43.48% of miners were classified as being at risk. With the other two methods that incorporate respiratory parameters, the proportion of overexposed miners was 82.61% with Method 2, and 73.91% with Method 3.

Conclusions: Of the three methods analyzed, the one that considers the respiratory parameter minute volume, through the estimation of the inhaled dose, is the safest to define the group of miners at risk due to exposure to silica at high altitude.

https://doi.org/10.12961/aprl.2024.27.01.04
PDF (Español (España))

References

Zamora Saa M, Zamora-Saa J. Metodología para evaluar la exposición ocupacional a contaminantes químicos en altitud. Arch Prev Riesgos Labor. 2021;24(4):404-409. doi: 10.12961/aprl.2021.24.04.06

Dümmer W. Prevención de riesgos laborales a gran altura. Prevention of occupational hazards at high altitudes [en línea]. Encyclopaedia of occupational health & safety. 2011. Disponible en: https://www.iloencyclopaedia.org/part-vi-16255/barometric-pressure-reduced/item/237-prevention-of-occupational-hazards-at-high-altitudes

Zamora-Saa M, Zamora-Saa J, Bacaloni A. High altitude underground mining. Acclimatization and possible toxicological risks. G Ital Med Lav Ergon. 2022;44(3):352-359.

Bacaloni A, Zamora Saà MC, Sinibaldi F, Steffanina A, Insogna S. Respiratory parameters at varied altitudes in intermittent mining work. Int J Occup Med Environ Health. 2018;31(2):129-138. doi: 10.13075/ijomeh.1896.01082.

Decreto Supremo N° 594. Reglamento sobre condiciones sanitarias y ambientales básicas en los lugares de trabajo 2000 [en línea]. Santiago, Chile: Ministerio de Salud, Diario Oficial de la República de Chile, 29 de abril 2000 [28 de junio 2023]. Disponible en: https://www.bcn.cl/leychile/navegar?idNorma=167766.

American Conference of Governmental Industrial Hygienists (ACGIH). Threshold limit values and biological exposure indices, Cincinnati, USA: Signature Publications; 2015.

Ramírez AV. Exposición toxicológica en las grandes alturas: ¿es necesario corregir los valores límite umbral de exposición de tóxicos?. Anales de la Facultad de Medicina. 2011;72(1):61-67.

Keramydas D, Bakakos P, Alchanatis M, Papalexis P, Konstantakopoulos I, Tavernaraki K, et al. Investigation of the health effects on workers exposed to respirable crystalline silica during outdoor and underground construction projects. Exp Ther Med. 2020;20(2):882-889. doi: 10.3892/etm.2020.8786

Mozaffari S, Heibati B, Jaakkola MS, Lajunen TK, Kalteh S, Alimoradi H, et al. Effects of occupational exposures on respiratory health in steel factory workers. Front Public Health. 2023;11:1082874. doi: 10.3389/fpubh.2023.1082874

Hoy RF, Chambers DC. Silica-related diseases in the modern world. Allergy. 2020;75(11):2805-2817. doi: 10.1111/all.14202.

UNE-EN 689:2019+AC:2019 [Internet]. Une.org. [citado el 28 de diciembre de 2023]. Disponible en: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=norma-une-en-689-2019-ac-2019-n0062148

Biblioteca del Congreso Nacional. Biblioteca del Congreso Nacional [Internet]. www.bcn.cl/leychile. [cited 2023 Dec 18]. Available from: https://www.bcn.cl/leychile/navegar?i=1048619

Bhatti U, Rani K, Memon MQ. Variation in lung volumes and capacities among young males in relation to height. J Ayub Med Coll Abbottabad. 2014;26(2):200-2.

Barros R, Raposo L, Moreira N, Rocha M, Calaç P, Spencer, I, et al. Capacidad vital lenta: diferencias entre la capacidad vital espiratoria y la capacidad vital inspiratoria. Rev am med respir. 2021:167-176.

Wang L, Jiang Z. Tidal Volume Level Estimation Using Respiratory Sounds. J Healthc Eng. 2023;2023:4994668. doi: 10.1155/2023/4994668

Hill B, Annesley SH. Monitoring respiratory rate in adults. Br J Nurs. 2020;29(1):12-16. doi: 10.12968/bjon.2020.29.1.12.

Hallett S, Toro F, Ashurst JV. Physiology, Tidal Volume. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.

Rey-Brandariz J, Martínez C, Candal-Pedreira C, Pérez-Ríos M, Varela-Lema L, Ruano-Ravina A. Occupational exposure to respirable crystalline silica and lung cancer: a systematic review of cut-off points. Environ Health. 2023;22(1):82. doi: 10.1186/s12940-023-01036-0

Brief RS, Scala RA. Occupational health aspects of unusual work schedules: a review of Exxon's experiences. Am Ind Hyg Assoc J. 1986;47(4):199-202. doi: 10.1080/15298668691389612

UNE-EN ISO 13137:2022 [Internet]. Une.org. [citado el 28 de diciembre de 2023]. Disponible en: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0070733

NTP (INSST) Pérdida de carga muestreo de agentes químicos - Portal INSST - INSST [Internet]. Portal INSST. [citado el 28 de diciembre de 2023]. Disponible en: https://www.insst.es/el-instituto-al-dia/ntp-1168-perdida-de-carga-asociada-a-muestreadores-y-elementos-de-retencion-en-el-muestreo-de-agentes-quimicos

Gholami A, Tajik R, Atif K, Zarei AA, Abbaspour S, Teimori-Boghsani G, Attar M. Respiratory Symptoms and Diminished Lung Functions Associated with Occupational Dust Exposure Among Iron Ore Mine Workers in Iran. Open Respir Med J. 2020;14:1-7. doi: 10.2174/1874306402014010001

Minsal.cl. [cited 2023 Dec 18]. Available from: https://www.minsal.cl/sites/default/files/files/Protocolo%20de%20vigilancia%20del%20ambiente%20de%20trabajo%20y%20de%20la%20salud%20de%20los%20trabajadores%20con%20exposici%C3%B3n%20a%20silice.pdf

Mason NP, Barry PW, Pollard AJ, Collier DJ, Taub NA, Miller MR, Milledge JS. Serial changes in spirometry during an ascent to 5,300 m in the Nepalese Himalayas. High Alt Med Biol. 2000;1(3):185-95. doi: 10.1089/15270290050144181

Alam R, Peden D, Ghaemmaghami B, Lach J. Inferring Respiratory Minute Volume from Wrist Motion. Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:6935-6938. doi: 10.1109/EMBC.2019.8857949

Richard NA, Sahota IS, Widmer N, Ferguson S, Sheel AW, Koehle MS. Acute mountain sickness, chemosensitivity, and cardiorespiratory responses in humans exposed to hypobaric and normobaric hypoxia. J Appl Physiol (1985). 2014;116(7):945-52. doi: 10.1152/japplphysiol.00319.2013

Burki NK. Effects of acute exposure to high altitude on ventilatory drive and respiratory pattern. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(4):1027-31. doi: 10.1152/jappl.1984.56.4.1027. PMID: 6725050.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Margarita Zamora Saá, Rodolfo Jara-Jegó

Downloads

Download data is not yet available.